I Year – II SEMESTER

T P C 3+1 0 3

ENGINEERING PHYSICS

UNIT-I PHYSICAL OPTICS FOR INSTRUMENTS

"Objective Designing an instrument and enhancing the resolution for its operation would be effective as achieved through study of applicational aspects of physical Optics"

INTERFACE : Introduction – Interference in thin films by reflection – Newton's rings.

DIFFRACTION : Introduction – Fraunhofer diffraction - Fraunhofer diffraction at double slit (qualitative) – Diffraction grating – Grating spectrum – Resolving power of a grating – Rayleigh's criterion for resolving power.

POLARIZATION : Introduction – Types of Polarization – Double refraction – Quarter wave plate ad Half Wave plate.

UNIT-II

COHERENT OPTICS – COMMUNICATIONS AND STRUCTURE OF MATERIALS

Objectives while lasers are trusted Non-linear coherent sources established for the fitness of instrumentation, establishing a structure property relationship for materials requires allotment of an equivalent footing in convening the physics knowledge base.

LASERS: Introduction – coherent sources – Characteristics of lasers – Spontaneous and Stimulated emission of radiation – Einstein's coefficients – Population inversion – Three and Four level pumping schemes – Ruby laser – Helium Neon laser.

FIBER OPTICS :Introduction – Principle of Optical Fiber – Acceptance angle and acceptance cone – Numerical aperture.

CRYSTALLOGRAPHY : Introduction – Space lattice – Basis – Unit Cell – Lattice parameters – Bravais lattices – Crystal systems – Structures and packing fractions of SC,BCC and FCC

X-RAY DIFFRACTION TECHNIQUES : Directions and planes in crystals – Miller indices – Separation between successive [h k l] planes – Bragg's law.

UNIT-III

MAGNETIC, ELECTRIC FIELD RESPONSE OF MATERIALS & SUPERCONDUCTIVITY

"Objective many of the Electrical or Electronic gadgets are designed basing on the response of naturally abundant and artificially made materials, while their response to E- or H- fields controls their performance.

MAGNETIC PROPERTIES : Magnetic permeability – Magnetization – Organ or magnetic moment – Classification of Magnetic materials – Dir, para, Ferro, anti ferro and ferri-magnetism – Hysteresis curve.

DIELECTRIC PROPERTIES : Introduction – Dielectric constant – Electronic, ionic and orientational polarization – internal fields – Clausius – Mossotti equation – Dielectric loss, Breakdown and Strength.

SUPERCONDUCTIVITY : General properties – Meissner effect – Type I and Type II superconductors – BCS Theory Flux quantization London's equations – Penetration depth – DC and AC Josephson effects – SQUIDS.

$\mathbf{UNIT} - \mathbf{IV}$

ACOUSTICS AND EM – FIELDS:

Objective: The utility and nuances of ever pervading SHM and its consequences would be the first hand-on to as it clearly conveyed through the detailed studies of Acoustics of Buildings, while vectorial concepts of EM fields paves the student to gear – up for a deeper understanding.

ACOUSTICS: Sound absorption, absorption coefficient and its measurements, Reverberations time – Sabine's formula, Eyring's formula.

ELECTRO-MAGNETIC FIELDS: Gauss and stokes theorems (qualitative) – Fundamental laws of electromagnetism – Maxwell's Electromagnetic Equations (Calculus approach).

UNIT – V

QUANTUM MECHANICS FOR ELECTRONIC TRANSPORT

Objective: The discrepancy between classical estimates and laboratory observations of physical properties exhibited by materials would be lifted out through the understanding quantum picture of sub-atomic world dominated by electron and its presence.

QUANTUM MECHANICS: Introduction to matter waves – Schrodinger Time Independent and Time Dependent wave equations – Particle in a box.

FREE ELECTRON THEORY: Classical free electron theory – electrical conductivity – Mean free path – Relaxation time and drifty velocity – Quantum free electron theory – Fermi – Dirac (analytical) and its dependence on temperature – Fermi energy – density of states – derivations for current density.

BAND THEORY OF SOLIDS: Bloch theorem (qualitative) – Kronig – Penney model – Origin of energy band formation in solids – Classification of

materials into conductors, semi – conductors & insulators – Concepts of effective mass of electron - concept of hole.

UNIT – VI SEMICONDUCTOR PHYSICS:

Objective: In the wake of ever increasing demand for the space and power the watch word "small is beautiful", understanding the physics of electronic transport as underlying mechanism for appliances would provide a knowledge base.

Introduction – Intrinsic semiconductor and carrier concentration – Equation for conductivity – Extrinsic semiconductor and carrier concentration – Drift and diffusion – Einstein's equation – Hall Effect – direct & indirect band gap semiconductors – Electronic transport Mechanism for LEDs, Photo conductors and solar cells.

TEXT BOOKS

- 1. Solid state Physics by A.J. Dekker (Mc Millan India Ltd.)
- 2. A text book of Engineering Physics by M.N. Avadhanulu & P.G. Kshirasagar (S. Chand publications).
- 3. Engineering Physics b; y M.R. Srinivasan (New Age international publishers).

REFERENCE BOOKS

- 1. 'Introduction to solid state physics' by Charles Kittle (Willey India Pvt.Ltd)
- 2. 'Applied Physics' by T. Bhimasenkaram (BSP BH Publications)
- 3. 'Applied Physics' by M.Arumugam (Anuradha Agencies)
- 4. 'Engineering Physics' by Palanisamy (Scitech Publishers)
- 5. 'Engineering Physics' by D.K.Bhattacharya (Oxford University press).
- 6. 'Engineering Physics' by Mani Naidu S (Pearson Publications).
- 7. 'Engineering Physics' by Sanjay D Jain and Girish G Sahasrabudhe (University Press).
- 8. 'Engineering Physics' by B.K.Pandey & S. Chaturvedi (Cengage Learning).